Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.010
Filtrar
1.
Bioresour Technol ; 393: 130025, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37972904

RESUMO

Single cell protein (SCP) is a promising alternative protein source, as its production bypasses the disadvantages of animal protein production in industrial agriculture. Coupling a fast-growing hydrogen consuming organism with microbial electrolysis cells (MECs) could be a viable method for SCP production. In this study, a fast-growing and protein-rich methanogen, Methanococcus maripaludis was selected as the primary SCP source. The inoculation of M. maripaludis in MECs triggered cell synthesis with methane production. The doubling time measured was 11.2 h and the specific growth rate was 0.062 1/h. The highest SCP production rate was 13.7 mg/L/h. In the dried biomass, the weight of protein was over 60 %. Amino acid profiling of the harvested biomass demonstrated high abundance of essential amino acids. The electron flux analysis indicated that 31.3 % electrons in the electrochemical systems were directed into SCP synthesis. These results illustrated the potential for SCP production by coupling a fast-growing methanogen with MECs.


Assuntos
Proteínas na Dieta , Metano , Mathanococcus , Animais , Mathanococcus/metabolismo , Aminoácidos/metabolismo , Hidrogênio/metabolismo , Eletrólise
2.
J Biol Chem ; 300(1): 105550, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072055

RESUMO

Methanogens are essential for the complete remineralization of organic matter in anoxic environments. Most cultured methanogens are hydrogenotrophic, using H2 as an electron donor to reduce CO2 to CH4, but in the absence of H2 many can also use formate. Formate dehydrogenase (Fdh) is essential for formate oxidation, where it transfers electrons for the reduction of coenzyme F420 or to a flavin-based electron bifurcating reaction catalyzed by heterodisulfide reductase (Hdr), the terminal reaction of methanogenesis. Furthermore, methanogens that use formate encode at least two isoforms of Fdh in their genomes, but how these different isoforms participate in methanogenesis is unknown. Using Methanococcus maripaludis, we undertook a biochemical characterization of both Fdh isoforms involved in methanogenesis. Both Fdh1 and Fdh2 interacted with Hdr to catalyze the flavin-based electron bifurcating reaction, and both reduced F420 at similar rates. F420 reduction preceded flavin-based electron bifurcation activity for both enzymes. In a Δfdh1 mutant background, a suppressor mutation was required for Fdh2 activity. Genome sequencing revealed that this mutation resulted in the loss of a specific molybdopterin transferase (moeA), allowing for Fdh2-dependent growth, and the metal content of the proteins suggested that isoforms are dependent on either molybdenum or tungsten for activity. These data suggest that both isoforms of Fdh are functionally redundant, but their activities in vivo may be limited by gene regulation or metal availability under different growth conditions. Together these results expand our understanding of formate oxidation and the role of Fdh in methanogenesis.


Assuntos
Formiato Desidrogenases , Mathanococcus , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Mathanococcus/genética , Mathanococcus/metabolismo , Flavinas/metabolismo , Formiatos/metabolismo , Isoformas de Proteínas/metabolismo
3.
RNA Biol ; 20(1): 760-773, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37731260

RESUMO

Ribosomal RNA (rRNA) processing and maturation are fundamentally important for ribosome biogenesis, but the mechanisms in archaea, the third form of life, remains largely elusive. This study aimed to investigate the rRNA maturation process in Methanococcus maripaludis, a representative archaeon lacking known 3'-5' exonucleases. Through cleavage site identification and enzymatic assays, the splicing endonuclease EndA was determined to process the bulge-helix-bulge (BHB) motifs in 16S and 23S rRNA precursors. After splicing, the circular processing intermediates were formed and this was confirmed by quantitative RT-PCR and Northern blot. Ribonuclease assay revealed a specific cleavage at a 10-nt A/U-rich motif at the mature 5' end of pre-16S rRNA, which linearized circular pre-16S rRNA intermediate. Further 3'-RACE and ribonuclease assays determined that the endonuclease Nob1 cleaved the 3' extension of pre-16S rRNA, and so generated the mature 3' end. Circularized RT-PCR (cRT-PCR) and 5'-RACE identified two cleavage sites near helix 1 at the 5' end of 23S rRNA, indicating that an RNA structure-based endonucleolytic processing linearized the circular pre-23S rRNA intermediate. In the maturation of pre-5S rRNA, multiple endonucleolytic processing sites were determined at the 10-nt A/U-rich motif in the leader and trailer sequence. This study demonstrates that endonucleolytic processing, particularly at the 10-nt A/U-rich motifs play an essential role in the pre-rRNA maturation of M. maripaludis, indicating diverse pathways of rRNA maturation in archaeal species.


Assuntos
Mathanococcus , RNA Ribossômico 23S , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Mathanococcus/genética , RNA Ribossômico 5S , Archaea , Ribonucleases
4.
Commun Biol ; 6(1): 799, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37524775

RESUMO

Methanogens inhabit euxinic (sulfide-rich) or ferruginous (iron-rich) environments that promote the precipitation of transition metals as metal sulfides, such as pyrite, reducing metal or sulfur availability. Such environments have been common throughout Earth's history raising the question as to how anaerobes obtain(ed) these elements for the synthesis of enzyme cofactors. Here, we show a methanogen can synthesize molybdenum nitrogenase metallocofactors from pyrite as the source of iron and sulfur, enabling nitrogen fixation. Pyrite-grown, nitrogen-fixing cells grow faster and require 25-fold less molybdenum than cells grown under euxinic conditions. Growth yields are 3 to 8 times higher in cultures grown under ferruginous relative to euxinic conditions. Physiological, transcriptomic, and geochemical data indicate these observations are due to sulfide-promoted metal limitation, in particular molybdenum. These findings suggest that molybdenum nitrogenase may have originated in a ferruginous environment that titrated sulfide to form pyrite, facilitating the availability of sufficient iron, sulfur, and molybdenum for cofactor biosynthesis.


Assuntos
Mathanococcus , Nitrogenase , Molibdênio , Ferro , Metais , Sulfetos , Enxofre
5.
Metab Eng ; 79: 130-145, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495072

RESUMO

Libraries of well-characterized genetic elements for fine-tuning gene expression are essential for biological and biotechnological research and applications. The fast-growing and genetically tractable methanogen, Methanococcus maripaludis, is a promising host organism for biotechnological conversion of carbon dioxide and renewable hydrogen into fuels and value-added products, as well as fundamental biological studies of archaea. However, the lack of molecular tools for gene expression has hindered its application as a workhorse to fine-tune gene and metabolic pathway expressions. In this study, we developed a genetic toolbox, including libraries of promoters, ribosome binding sites (RBS), and neutral sites for chromosomal integration, to facilitate precise gene expression in M. maripaludis. We generated a promoter library consisting of 81 constitutive promoters with expression strengths spanning a ∼104-fold dynamic range. Importantly, we identified a base composition rule for strong archaeal promoters and successfully remodeled weak promoters, enhancing their activities by up to 120-fold. We also established an RBS library containing 42 diverse RBS sequences with translation strengths covering a ∼100-fold dynamic range. Additionally, we identified eight neutral sites and developed a one-step, Cas9-based marker-less knock-in approach for chromosomal integration. We successfully applied the characterized promoter and RBS elements to significantly improve recombinant protein expression by 41-fold and modulate essential gene expression to generate corresponding physiological changes in M. maripaludis. Therefore, this work establishes a solid foundation for utilizing this autotrophic methanogen as an ideal workhorse for archaeal biology and biotechnological studies and applications.


Assuntos
Dióxido de Carbono , Mathanococcus , Mathanococcus/genética , Mathanococcus/metabolismo , Dióxido de Carbono/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/genética , Expressão Gênica
6.
Sci Rep ; 13(1): 5351, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005440

RESUMO

Thiolation of uridine 34 in the anticodon loop of several tRNAs is conserved in the three domains of life and guarantees fidelity of protein translation. U34-tRNA thiolation is catalyzed by a complex of two proteins in the eukaryotic cytosol (named Ctu1/Ctu2 in humans), but by a single NcsA enzyme in archaea. We report here spectroscopic and biochemical experiments showing that NcsA from Methanococcus maripaludis (MmNcsA) is a dimer that binds a [4Fe-4S] cluster, which is required for catalysis. Moreover, the crystal structure of MmNcsA at 2.8 Å resolution shows that the [4Fe-4S] cluster is coordinated by three conserved cysteines only, in each monomer. Extra electron density on the fourth nonprotein-bonded iron most likely locates the binding site for a hydrogenosulfide ligand, in agreement with the [4Fe-4S] cluster being used to bind and activate the sulfur atom of the sulfur donor. Comparison of the crystal structure of MmNcsA with the AlphaFold model of the human Ctu1/Ctu2 complex shows a very close superposition of the catalytic site residues, including the cysteines that coordinate the [4Fe-4S] cluster in MmNcsA. We thus propose that the same mechanism for U34-tRNA thiolation, mediated by a [4Fe-4S]-dependent enzyme, operates in archaea and eukaryotes.


Assuntos
Proteínas Ferro-Enxofre , Mathanococcus , Humanos , Mathanococcus/genética , Uridina/metabolismo , Cisteína/metabolismo , Biossíntese de Proteínas , RNA de Transferência/genética , Enxofre/metabolismo , Proteínas Ferro-Enxofre/metabolismo
7.
Mol Genet Genomics ; 298(3): 537-548, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36823423

RESUMO

Natural transformation, the process whereby a cell acquires DNA directly from the environment, is an important driver of evolution in microbial populations, yet the mechanism of DNA uptake is only characterized in bacteria. To expand our understanding of natural transformation in archaea, we undertook a genetic approach to identify a catalog of genes necessary for transformation in Methanococcus maripaludis. Using an optimized method to generate random transposon mutants, we screened 6144 mutant strains for defects in natural transformation and identified 25 transformation-associated candidate genes. Among these are genes encoding components of the type IV-like pilus, transcription/translation associated genes, genes encoding putative membrane bound transport proteins, and genes of unknown function. Interestingly, similar genes were identified regardless of whether replicating or integrating plasmids were provided as a substrate for transformation. Using allelic replacement mutagenesis, we confirmed that several genes identified in these screens are essential for transformation. Finally, we identified a homolog of a membrane bound substrate transporter in Methanoculleus thermophilus and verified its importance for transformation using allelic replacement mutagenesis, suggesting a conserved mechanism for DNA transfer in multiple archaea. These data represent an initial characterization of the genes important for transformation which will inform efforts to understand gene flow in natural populations. Additionally, knowledge of the genes necessary for natural transformation may assist in identifying signatures of transformation machinery in archaeal genomes and aid the establishment of new model genetic systems for studying archaea.


Assuntos
Mathanococcus , Mathanococcus/genética , Mathanococcus/metabolismo , Mutagênese/genética , Plasmídeos , Mutagênese Insercional
8.
Appl Environ Microbiol ; 88(23): e0115922, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36374033

RESUMO

The complete remineralization of organic matter in anoxic environments relies on communities of microorganisms that ferment organic acids and alcohols to CH4. This is accomplished through syntrophic association of H2 or formate producing bacteria and methanogenic archaea, where exchange of these intermediates enables growth of both organisms. While these communities are essential to Earth's carbon cycle, our understanding of the dynamics of H2 or formate exchanged is limited. Here, we establish a model partnership between Syntrophotalea carbinolica and Methanococcus maripaludis. Through sequencing a transposon mutant library of M. maripaludis grown with ethanol oxidizing S. carbinolica, we found that genes encoding the F420-dependent formate dehydrogenase (Fdh) and F420-dependent methylene-tetrahydromethanopterin dehydrogenase (Mtd) are important for growth. Competitive growth of M. maripaludis mutants defective in either H2 or formate metabolism verified that, across multiple substrates, interspecies formate exchange was dominant in these communities. Agitation of these cultures to facilitate diffusive loss of H2 to the culture headspace resulted in an even greater competitive advantage for M. maripaludis strains capable of oxidizing formate. Finally, we verified that an M. maripaludis Δmtd mutant had a defect during syntrophic growth. Together, these results highlight the importance of formate exchange for the growth of methanogens under syntrophic conditions. IMPORTANCE In the environment, methane is typically generated by fermentative bacteria and methanogenic archaea working together in a process called syntrophy. Efficient exchange of small molecules like H2 or formate is essential for growth of both organisms. However, difficulties in determining the relative contribution of these intermediates to methanogenesis often hamper efforts to understand syntrophic interactions. Here, we establish a model syntrophic coculture composed of S. carbinolica and the genetically tractable methanogen M. maripaludis. Using mutant strains of M. maripaludis that are defective for either H2 or formate metabolism, we determined that interspecies formate exchange drives syntrophic growth of these organisms. Together, these results advance our understanding of the degradation of organic matter in anoxic environments.


Assuntos
Formiatos , Mathanococcus , Formiatos/metabolismo , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Metano/metabolismo , Hidrogênio/metabolismo
9.
Microbiol Spectr ; 10(4): e0189322, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35876569

RESUMO

Iron sulfur (Fe-S) proteins are essential and ubiquitous across all domains of life, yet the mechanisms underpinning assimilation of iron (Fe) and sulfur (S) and biogenesis of Fe-S clusters are poorly understood. This is particularly true for anaerobic methanogenic archaea, which are known to employ more Fe-S proteins than other prokaryotes. Here, we utilized a deep proteomics analysis of Methanococcus voltae A3 cultured in the presence of either synthetic pyrite (FeS2) or aqueous forms of ferrous iron and sulfide to elucidate physiological responses to growth on mineral or nonmineral sources of Fe and S. The liquid chromatography-mass spectrometry (LCMS) shotgun proteomics analysis included 77% of the predicted proteome. Through a comparative analysis of intra- and extracellular proteomes, candidate proteins associated with FeS2 reductive dissolution, Fe and S acquisition, and the subsequent transport, trafficking, and storage of Fe and S were identified. The proteomic response shows a large and balanced change, suggesting that M. voltae makes physiological adjustments involving a range of biochemical processes based on the available nutrient source. Among the proteins differentially regulated were members of core methanogenesis, oxidoreductases, membrane proteins putatively involved in transport, Fe-S binding ferredoxin and radical S-adenosylmethionine proteins, ribosomal proteins, and intracellular proteins involved in Fe-S cluster assembly and storage. This work improves our understanding of ancient biogeochemical processes and can support efforts in biomining of minerals. IMPORTANCE Clusters of iron and sulfur are key components of the active sites of enzymes that facilitate microbial conversion of light or electrical energy into chemical bonds. The proteins responsible for transporting iron and sulfur into cells and assembling these elements into metal clusters are not well understood. Using a microorganism that has an unusually high demand for iron and sulfur, we conducted a global investigation of cellular proteins and how they change based on the mineral forms of iron and sulfur. Understanding this process will answer questions about life on early earth and has application in biomining and sustainable sources of energy.


Assuntos
Proteínas Ferro-Enxofre , Mathanococcus , Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mathanococcus/metabolismo , Minerais/metabolismo , Proteômica , Enxofre/metabolismo
10.
ISME J ; 16(10): 2313-2319, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35780255

RESUMO

Catabolic and anabolic processes are finely coordinated in microorganisms to provide optimized fitness under varying environmental conditions. Understanding this coordination and the resulting physiological traits reveals fundamental strategies of microbial acclimation. Here, we characterized the system-level physiology of Methanococcus maripaludis, a niche-specialized methanogenic archaeon, at different dilution rates ranging from 0.09 to 0.003 h-1 in chemostat experiments under phosphate (i.e., anabolic) limitation. Phosphate was supplied as the limiting nutrient, while formate was supplied in excess as the catabolic substrate and carbon source. We observed a decoupling of catabolism and anabolism resulting in lower biomass yield relative to catabolically limited cells at the same dilution rates. In addition, the mass abundance of several coarse-grained proteome sectors (i.e., combined abundance of proteins grouped based on their function) exhibited a linear relationship with growth rate, mostly ribosomes and their biogenesis. Accordingly, cellular RNA content also correlated with growth rate. Although the methanogenesis proteome sector was invariant, the metabolic capacity for methanogenesis, measured as methane production rates immediately after transfer to batch culture, correlated with growth rate suggesting translationally independent regulation that allows cells to only increase catabolic activity under growth-permissible conditions. These observations are in stark contrast to the physiology of M. maripaludis under formate (i.e., catabolic) limitation, where cells keep an invariant proteome including ribosomal content and a high methanogenesis capacity across a wide range of growth rates. Our findings reveal that M. maripaludis employs fundamentally different strategies to coordinate global physiology during anabolic phosphate and catabolic formate limitation.


Assuntos
Mathanococcus , Fosfatos , Archaea/genética , Carbono/metabolismo , Formiatos/metabolismo , Hidrogênio/metabolismo , Metano/metabolismo , Mathanococcus/metabolismo , Fosfatos/metabolismo , Proteoma/metabolismo , RNA
11.
J Bacteriol ; 204(7): e0012022, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35657707

RESUMO

Live-cell fluorescence imaging of methanogenic archaea has been limited due to the strictly anoxic conditions required for growth and issues with autofluorescence associated with electron carriers in central metabolism. Here, we show that the fluorescence-activating and absorption-shifting tag (FAST) complexed with the fluorogenic ligand 4-hydroxy-3-methylbenzylidene-rhodanine (HMBR) overcomes these issues and displays robust fluorescence in Methanococcus maripaludis. We also describe a mechanism to visualize cells under anoxic conditions using a fluorescence microscope. Derivatives of FAST were successfully applied for protein abundance analysis, subcellular localization analysis, and determination of protein-protein interactions. FAST fusions to both formate dehydrogenase (Fdh) and F420-reducing hydrogenase (Fru) displayed increased fluorescence in cells grown on formate-containing medium, consistent with previous studies suggesting the increased abundance of these proteins in the absence of H2. Additionally, FAST fusions to both Fru and the ATPase associated with the archaellum (FlaI) showed a membrane localization in single cells observed using anoxic fluorescence microscopy. Finally, a split reporter translationally fused to the alpha and beta subunits of Fdh reconstituted a functionally fluorescent molecule in vivo via bimolecular fluorescence complementation. Together, these observations demonstrate the utility of FAST as a tool for studying members of the methanogenic archaea. IMPORTANCE Methanogenic archaea are important members of anaerobic microbial communities where they catalyze essential reactions in the degradation of organic matter. Developing additional tools for studying the cell biology of these organisms is essential to understanding them at a mechanistic level. Here, we show that FAST, in combination with the fluorogenic ligand HMBR, can be used to monitor protein dynamics in live cells of M. maripaludis. The application of FAST holds promise for future studies focused on the metabolism and physiology of methanogenic archaea.


Assuntos
Formiato Desidrogenases , Mathanococcus , Archaea/metabolismo , Formiato Desidrogenases/metabolismo , Ligantes , Mathanococcus/metabolismo , Imagem Óptica
12.
ACS Synth Biol ; 11(7): 2496-2503, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35730587

RESUMO

The rapid-growing and genetically tractable methanogen Methanococcus maripaludis is a promising host organism for the biotechnological conversion of carbon dioxide and renewable hydrogen to fuels and value-added products. Expansion of its product scope through metabolic engineering necessitates reliable and efficient genetic tools, particularly for genome edits that affect the primary metabolism and cell growth. Here, we have designed a genome-editing toolbox by utilizing Cas12a from Lachnospiraceae bacterium ND2006 (LbCas12a) in combination with the homology-directed repair machinery endogenously present in M. maripaludis. This toolbox can delete target genes with a success rate of up to 95%, despite the hyperpolyploidy of M. maripaludis. For the purpose of demonstrating a large deletion, the M. maripaludis flagellum operon (∼8.9 kbp) was replaced by the Escherichia coli ß-glucuronidase gene. To facilitate metabolic engineering and flux balancing in M. maripaludis, the relative strength of 15 different promoters was quantified in the presence of two common growth substrates, either formate or carbon dioxide and hydrogen. This CRISPR/LbCas12a toolbox can be regarded as a reliable and quick method for genome editing in a methanogen.


Assuntos
Edição de Genes , Mathanococcus , Sistemas CRISPR-Cas/genética , Dióxido de Carbono/metabolismo , Edição de Genes/métodos , Hidrogênio/metabolismo , Engenharia Metabólica/métodos , Mathanococcus/genética , Mathanococcus/metabolismo
13.
FEBS J ; 289(23): 7519-7536, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35717557

RESUMO

Methanogenic archaea have received attention due to their potential use in biotechnological applications such as methane production, so their metabolism and regulation are topics of special interest. When growing in a nutrient-rich medium, these organisms exhibit gluconeogenic metabolism; however, under starvation conditions, they turn to glycolytic metabolism. To date, no regulatory mechanism has been described for this gluconeogenic/glycolytic metabolic switch. Here, we report that adenosine monophosphate (AMP) activates both enzymatic activities of the bifunctional adenosine diphosphate (ADP)-dependent phosphofructokinase/glucokinase from Methanococcus maripaludis (MmPFK/GK). To understand this phenomenon, we performed a comprehensive kinetic characterisation, including determination of the kinetics, substrate inhibition and AMP activation mechanism of this enzyme. We determined that MmPFK/GK has an ordered-sequential mechanism, in which MgADP is the first substrate to bind and AMP is the last product released. The enzyme also displays substrate inhibition by both sugar substrates; we determined that this inhibition occurs through the formation of catalytically nonproductive enzyme complexes caused by sugar binding. For both activities, the AMP activation mechanism occurs primarily through incremental changes in the affinity for the sugar substrate, with this effect being higher in the GK than in the PFK activity. Interestingly, due to the increase in the sugar substrate affinity caused by AMP, an enhancement in the sugar substrate inhibition effect was also observed for both activities, which can be explained by an increase in sugar binding leading to the formation of dead-end complexes. These results shed light on the regulatory mechanisms of methanogenic archaeal sugar metabolism, a phenomenon that has been largely unexplored.


Assuntos
Mathanococcus , Fosfofrutoquinases , Difosfato de Adenosina , Monofosfato de Adenosina , Mathanococcus/genética , Açúcares
14.
Elife ; 102021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-34964713

RESUMO

Recently, aCPSF1 was reported to function as the long-sought global transcription termination factor of archaea; however, the working mechanism remains elusive. This work, through analyzing transcript-3'end-sequencing data of Methanococcus maripaludis, found genome-wide positive correlations of both the terminator uridine(U)-tract and aCPSF1 with hierarchical transcription termination efficacies (TTEs). In vitro assays determined that aCPSF1 specifically binds to the terminator U-tract with U-tract number-related binding affinity, and in vivo assays demonstrated the two elements are indispensable in dictating high TTEs, revealing that aCPSF1 and the terminator U-tract cooperatively determine high TTEs. The N-terminal KH domains equip aCPSF1 with specific-binding capacity to terminator U-tract and the aCPSF1-terminator U-tract cooperation; while the nuclease activity of aCPSF1 was also required for TTEs. aCPSF1 also guarantees the terminations of transcripts with weak intrinsic terminator signals. aCPSF1 orthologs from Lokiarchaeota and Thaumarchaeota exhibited similar U-tract cooperation in dictating TTEs. Therefore, aCPSF1 and the intrinsic U-rich terminator could work in a noteworthy two-in-one termination mode in archaea, which may be widely employed by archaeal phyla; using one trans-action factor to recognize U-rich terminator signal and cleave transcript 3'-end, the archaeal aCPSF1-dependent transcription termination may represent a simplified archetypal mode of the eukaryotic RNA polymerase II termination machinery.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação , Mathanococcus/genética , Regiões Terminadoras Genéticas , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
15.
ACS Synth Biol ; 10(11): 3028-3039, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34665610

RESUMO

Methanococcus maripaludis is a rapidly growing, hydrogenotrophic, and genetically tractable methanogen with unique capabilities to convert formate and CO2 to CH4. The existence of genome-scale metabolic models and an established, robust system for both large-scale and continuous cultivation make it amenable for industrial applications. However, the lack of molecular tools for differential gene expression has hindered its application as a microbial cell factory to produce biocatalysts and biochemicals. In this study, a library of differentially regulated promoters was designed and characterized based on the pst promoter, which responds to the inorganic phosphate concentration in the growth medium. Gene expression increases by 4- to 6-fold when the medium phosphate drops to growth-limiting concentrations. Hence, this regulated system decouples growth from heterologous gene expression without the need for adding an inducer. The minimal pst promoter is identified and contains a conserved AT-rich region, a factor B recognition element, and a TATA box for phosphate-dependent regulation. Rational changes to the factor B recognition element and start codon had no significant impact on expression; however, changes to the transcription start site and the 5' untranslated region resulted in the differential protein production with regulation remaining intact. Compared to a previous expression system based upon the histone promoter, this regulated expression system resulted in significant improvements in the expression of a key methanogenic enzyme complex, methyl-coenzyme M reductase, and the potentially toxic arginine methyltransferase MmpX.


Assuntos
Expressão Gênica/efeitos dos fármacos , Metano/metabolismo , Mathanococcus/efeitos dos fármacos , Mathanococcus/genética , Fosfatos/farmacologia , Formiatos/metabolismo , Oxirredutases/metabolismo
16.
Nat Commun ; 12(1): 4754, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362932

RESUMO

Chaperonins are homo- or hetero-oligomeric complexes that use ATP binding and hydrolysis to facilitate protein folding. ATP hydrolysis exhibits both positive and negative cooperativity. The mechanism by which chaperonins coordinate ATP utilization in their multiple subunits remains unclear. Here we use cryoEM to study ATP binding in the homo-oligomeric archaeal chaperonin from Methanococcus maripaludis (MmCpn), consisting of two stacked rings composed of eight identical subunits each. Using a series of image classification steps, we obtained different structural snapshots of individual chaperonins undergoing the nucleotide binding process. We identified nucleotide-bound and free states of individual subunits in each chaperonin, allowing us to determine the ATP occupancy state of each MmCpn particle. We observe distinctive tertiary and quaternary structures reflecting variations in nucleotide occupancy and subunit conformations in each chaperonin complex. Detailed analysis of the nucleotide distribution in each MmCpn complex indicates that individual ATP binding events occur in a statistically random manner for MmCpn, both within and across the rings. Our findings illustrate the power of cryoEM to characterize a biochemical property of multi-subunit ligand binding cooperativity at the individual particle level.


Assuntos
Trifosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Chaperoninas do Grupo II/química , Chaperoninas do Grupo II/metabolismo , Chaperoninas/metabolismo , Hidrólise , Mathanococcus/metabolismo , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Subunidades Proteicas/metabolismo
17.
J Microbiol Methods ; 188: 106294, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34333046

RESUMO

Standard methods of monitoring the growth kinetics of anaerobic microorganisms are generally impractical when there is a protracted or indeterminate period of active growth, and when high numbers of samples or replications are required. As part of our studies of the adaptive evolution of a simple anaerobic syntrophic mutualism, requiring the characterization of many isolates and alternative syntrophic pairings, we developed a multiplexed growth monitoring system using a combination of commercially available electronics and custom designed circuitry and materials. This system automatically monitors up to 64 sealed, and as needed pressurized, culture tubes and reports the growth data in real-time through integration with a customized relational database. The utility of this system was demonstrated by resolving minor differences in growth kinetics associated with the adaptive evolution of a simple microbial community comprised of a sulfate reducing bacterium, Desulfovibrio vulgaris, grown in syntrophic association with Methanococcus maripaludis, a hydrogenotrophic methanogen.


Assuntos
Bactérias Anaeróbias/crescimento & desenvolvimento , Técnicas Bacteriológicas/métodos , Coleta de Dados/métodos , Gases , Técnicas Bacteriológicas/instrumentação , Coleta de Dados/instrumentação , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Ensaios de Triagem em Larga Escala , Cinética , Mathanococcus/crescimento & desenvolvimento , Dispositivos Ópticos , Simbiose
18.
Chembiochem ; 22(24): 3414-3424, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34387404

RESUMO

Flavins play a central role in metabolism as molecules that catalyze a wide range of redox reactions in living organisms. Several variations in flavin biosynthesis exist among the domains of life, and their analysis has revealed many new structural and mechanistic insights till date. The cytidine triphosphate (CTP)-dependent riboflavin kinase in archaea is one such example. Unlike most kinases that use adenosine triphosphate, archaeal riboflavin kinases utilize CTP to phosphorylate riboflavin and produce flavin mononucleotide. In this study, we present the characterization of a new mesophilic archaeal CTP-utilizing riboflavin kinase homologue from Methanococcus maripaludis (MmpRibK), which is linked closely in sequence to the previously characterized thermophilic Methanocaldococcus jannaschii homologue. We reconstitute the activity of MmpRibK, determine its kinetic parameters and molecular factors that contribute to its unique properties, and finally establish the residues that improve its thermostability using computation and a series of experiments. Our work advances the molecular understanding of flavin biosynthesis in archaea by the characterization of the first mesophilic CTP-dependent riboflavin kinase. Finally, it validates the role of salt bridges and rigidifying amino acid residues in imparting thermostability to this unique structural fold that characterizes archaeal riboflavin kinase enzymes, with implications in enzyme engineering and biotechnological applications.


Assuntos
Citidina Trifosfato/química , Mathanococcus/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Engenharia de Proteínas , Temperatura , Citidina Trifosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Filogenia
19.
J Bacteriol ; 203(19): e0014621, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34251867

RESUMO

Methanogens have a high demand for iron (Fe) and sulfur (S); however, little is known of how they acquire, deploy, and store these elements and how this, in turn, affects their physiology. Methanogens were recently shown to reduce pyrite (FeS2), generating aqueous iron sulfide (FeSaq) clusters that are likely assimilated as a source of Fe and S. Here, we compared the phenotypes of Methanococcus voltae grown with FeS2 or ferrous iron [Fe(II)] and sulfide (HS-). FeS2-grown cells are 33% smaller yet have 193% more Fe than Fe(II)/HS--grown cells. Whole-cell electron paramagnetic resonance revealed similar distributions of paramagnetic Fe, although FeS2-grown cells showed a broad spectral feature attributed to intracellular thioferrate-like nanoparticles. Differential proteomic analyses showed similar expression of core methanogenesis enzymes, indicating that Fe and S source does not substantively alter the energy metabolism of cells. However, a homolog of the Fe(II) transporter FeoB and its putative transcriptional regulator DtxR were up-expressed in FeS2-grown cells, suggesting that cells sense Fe(II) limitation. Two homologs of IssA, a protein putatively involved in coordinating thioferrate nanoparticles, were also up-expressed in FeS2-grown cells. We interpret these data to indicate that, in FeS2-grown cells, DtxR cannot sense Fe(II) and therefore cannot downregulate FeoB. We suggest this is due to the transport of Fe(II) complexed with sulfide (FeSaq), leading to excess Fe that is sequestered by IssA as a thioferrate-like species. This model provides a framework for the design of targeted experiments aimed at further characterizing Fe acquisition and homeostasis in M. voltae and other methanogens. IMPORTANCE FeS2 is the most abundant sulfide mineral in the Earth's crust and is common in environments inhabited by methanogenic archaea. FeS2 can be reduced by methanogens, yielding aqueous FeSaq clusters that are thought to be a source of Fe and S. Here, we show that growth of Methanococcus voltae on FeS2 results in smaller cell size and higher Fe content per cell, with Fe likely stored intracellularly as thioferrate-like nanoparticles. Fe(II) transporters and storage proteins were upregulated in FeS2-grown cells. These responses are interpreted to result from cells incorrectly sensing Fe(II) limitation due to assimilation of Fe(II) as FeSaq. These findings have implications for our understanding of how Fe/S availability influences methanogen physiology and the biogeochemical cycling of these elements.


Assuntos
Ferro/metabolismo , Mathanococcus/metabolismo , Sulfetos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Proteínas de Transporte , Espectroscopia de Ressonância de Spin Eletrônica , Regulação Bacteriana da Expressão Gênica , Ferro/química , Nanopartículas Metálicas , Sulfetos/química
20.
Methods Mol Biol ; 2353: 37-50, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34292542

RESUMO

Iron-sulfur (Fe-S) clusters are among the oldest and most versatile cofactors present in all domains of life. Many bacterial and eukaryotic Fe-S proteins have been well-characterized, whereas the archaeal ones are less studied. Fe-S proteins are particularly abundant and play essential roles in methanogenic archaea. Methanococcus maripaludis is a model methanogen with available genetic tools. Here, we describe the techniques for anaerobic cultivation of M. maripaludis with formate, liposome-mediated transformation, expression and anoxic affinity purification of Fe-S proteins, Fe-S cluster reconstitution, and analysis of Fe-S proteins by UV-visible absorption spectroscopy.


Assuntos
Mathanococcus , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas Ferro-Enxofre/genética , Mathanococcus/metabolismo , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...